如图,已知三棱锥中,
,
,
为
中点,
为
中点,且△
为正三角形。
(1)求证:∥平面
;
(2)求证:平面⊥平面
.
(本小题满分12分)
已知等差数列中,
为数列
的前
项和.
(1)求数列的通项公式;
(2) 若数列的公差为正数,数列
满足
, 求数列
的前
项和
(本小题满分10分)选修4-5:不等式选讲
设(
)
(Ⅰ)当时,求函数
的定义域;
(Ⅱ)若当,
恒成立,求实数
的取值范围.
(本小题满分10分)选修4—4;坐标系与参数方程.
已知直线为参数), 曲线
(
为参数).
(Ⅰ)设与
相交于
两点,求
;
(Ⅱ)若把曲线上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
(本小题满分12分)已知函数.
(Ⅰ)当时,讨论
的单调性;
(Ⅱ)当时,对于任意的
,证明:不等式
(本小题满分12分)已知椭圆经过点
,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由.