(本小题满分14分)设椭圆方程 (
),
为椭圆右焦点,
为椭圆在短轴上的一个顶点,
的面积为6,(
为坐标原点);
(1)求椭圆方程;
(2)在椭圆上是否存在一点,使
的中垂线过点
?若存在,求出
点坐标;若不存在,说明理由.
(本小题满分12分)
已知平面向量,
,函数
.
(1)写出函数的单调递减区间;
(2)设,求直线
与
在闭区间
上的图像的所有交点坐标.
(本小题满分12分)
在△ABC中,设内角A、B、C的对边分别为a、b、c,
(Ⅰ)求角C的大小;
(Ⅱ)若且
,求
的面积.
(本小题满分12分)
设函数,若不等式
的解集为
。
(1)求的值;
(2)若函数在
上的最小值为1,求实数
的值。
(本小题满分12分)
已知两直线.试确定
的值,使
(1)//
;
(2),且
在
轴上的
截距为
.
(本小题满分14分)
已知函数的图象在点
(
为自然对数的底数)处的切线斜率为3.
(1)求实数的值;
(2)若,且
对任意
恒成立,求
的最大值;
(3)当时,证明
.