某化工企业每月生产收入40万元,按季度要上缴生产收入的25%作为税收,同时
在生产过程中产生的污水每月定额3万元的治污费交由污水厂处理.企业管理层决定从
2011年元月起,投资100万元自行配置治污设备,工期半年. 7月份设备上马后,就不需交纳治污费.同时治污设备使水得到了循环使用,会使三、四季度生产收入逐季上升,之后生产收入便稳定在四季度水平. 另外国家为了鼓励企业自已治污,会将每季税率由25%改为10%征收. 预计2011年四季度的毛利比一季度的毛利多38.07万元.
(毛利=生产收入-税收-治污费)(1)2011年前六个月上缴的税金预计为多少?
(2)单从节约的治污费和税收考虑,到2012年7月份前,能否抵回100万元的设备投资款.
(3)求2011年三、四季度生产收入的平均增长率.
(供参考数据:1.052="1.1025 " 1.062="1.1236 " 1.082="1.1664 " 1.12=1.21)
如图是由边长为1米的正方形地砖铺设的地面的示意图,小明沿图中的折线从点A到点B再到点C的路程行走,则小明的行程是多少米?(结果保留根号)
平面直角坐标系中,正方形AOBC如图所示,点C的坐标为(a,a),其中a使得式子有意义,反比例函数
的图象经过点C.
(1)求反比例函数解析式.
(2)若有一点D自A向O运动,当满足AD2=OD·AO时,求此时D点坐标.
(3)若点D在AO上、G为OB的延长线上的点,AD=BG,连接AB交DG于点H,写出AB-2HB与AD之间的数量关系(直接写出不需证明).
(4)如图,点E为正方形AOBC的OB边一点,点F为BC上一点且∠CAE=∠FEA=60°,求直线EF的解析式.
如图,△ABC中∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着D点按顺时针方向旋转600后到△ECD的位置,若AB=3,AC=2,求∠BAD的度数和AD的长。
据报导,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用的增长率相同,要使2008年的利用率提高到60%,求每年的增长率。(取≈1.41)
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为、
(km),
、
与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为km,;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)甲、乙两船同在行驶途中,若两船距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.