(本不题满分14分)
已知在平面直角坐标系中,向量
,△OFP的面积为
,且
。
(1)设,求向量
的夹角
的取值范围;
(2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程。
(本小题满分12分)
如图,点是椭圆
上一动点,点
是点
在
轴上的射影,坐标平面
内动点
满足:
(
为坐标原点),设动点
的轨迹为曲线
.
(Ⅰ)求曲线的方程并画出草图;
(Ⅱ)过右焦点的直线
交曲线
于
,
两点,且
,点
关于
轴的对称点为
,求直线
的方程.
(本小题满分12分)
如图,四棱锥的底面
为菱形,
平面
,
,
分别为
的中点,
.
(Ⅰ)求证:平面
.
(Ⅱ)求三棱锥的体积.
本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下表
性别 是否达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
(本小题满分12分)
已知在中,角
,
,
的对边的边长分别为
,
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)现给出三个条件:①;②
;③
.
试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出
的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分12分)
已知点Pn(an,bn)都在直线:y=2x+2上,P1为直线
与x轴的交点,数列
成等差数列,公差为1.(n∈N+)
(1)求数列,
的通项公式;
(2)若f(n)=问是否存在k
,使得f(k+5)=2f(k)-2成立;若存在,求出
k的值,若不存在,说明理由。
(3)求证:(n≥2,n∈N+)