、出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样。直角坐标系内任意两点
定义它们之间的一种“距离”:
,请解决以下问题:
1、(理)求线段上一点
的距离到原点
的“距离”;
(文)求点、
的“距离”
;
2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,
求“圆周”上的所有点到点 的“距离”均为
的“圆”方程;
(文)求线段上一点
的距离到原点
的“距离”;
3、(理)点、
,写出线段
的垂直平分线的轨迹方程并画出大致图像.
(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点、
,
,求经过这三个点确定的一个“圆”的方程,并画出大致图像;
(说明所给图形小正方形的单位是1)
(本小题满分12分)
已知函数在点
处的切线斜率为
,且
(Ⅰ)证明:; (Ⅱ)证明:函数
在区间
内至少有一个极值点.
(本小题满分12分)
已知函数的导函数
,数列
的前
项和为
,点
均在函数
的图象上.
(Ⅰ)求数列的通项公式及
的最大值;
(Ⅱ)令,其中
,求
的前
项和.
(本小题满分12分)
如图1,直角梯形中,
,
分别为边
和
上的点,且
,
.将四边形
沿
折起成如图2的位置,使
.
(Ⅰ)求证:平面
;
(Ⅱ)求四棱锥的体积;
(Ⅲ)求面与面
所成锐二面角的余弦值.
(本小题满分12分)某中学选派名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示.
活动次数 |
![]() |
![]() |
![]() |
参加人数 |
![]() |
![]() |
![]() |
[
(Ⅰ)从“青志队”中任意选名学生,求这
名同学中至少有
名同学参加活动次数恰好相等的概率;
(Ⅱ)从“青志队”中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量
的分布列及数学期望.
(本小题满分12分)设角是
的三个内角,已知向量
,
,且
.
(Ⅰ)求角的大小; (Ⅱ)若向量
,试求
的取值范围.