. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
已知公差大于零的等差数列的前
项和为
,且满足
,
,
(1)求数列的通项公式;
(2)若数列是等差数列,且
,求非零常数
;
(3)若(2)中的的前
项和为
,求证:
.
(本小题满分12分)
如图,已知正三棱柱ABC—A1B1C1的底面边长是2,D是CC1的中点,直线AD与侧面BB1C1C所成的角是45°.
(I)求二面角A—BD—C的大小;
(II)求点C到平面ABD的距离.
(本小题满分10分)
已知A,B,C是的三个内角,向量
,
,且
.
(I)求角A;
(II)若的值.
(本小题满分10分)
已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*.
(Ⅰ)求Sn和an;
(Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.
(本小题满分10分)
已知向量,
,
,其中
.
(Ⅰ)当时,求
值的集合; (Ⅱ)求
的最大值.
(本小题满分10分)
已知
(Ⅰ)若,求f(x)的单调增区间;
(Ⅱ)若时,f(x)的最大值为4,求a的值.