(本题满分14分,第1小题满分7分,第2小题满分7分)已知函数.(1)若是最小正周期为的偶函数,求和的值;(2)若在上是增函数,求的最大值;并求此时在上的取值范围.
已知函数 (Ⅰ)若为的极值点,求实数的值;
在中,角、、所对的边分别是、、, 向量,且与共线. (Ⅰ)求角的大小; (Ⅱ)设,求的最大值及此时角的大小.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的单调递减区间; (Ⅲ)求在区间上的最大值和最小值.
已知函数,其中,是自然对数的底数,若,且函数在区间内有零点,求实数的取值范围.
已知函数,其中是自然对数的底数. (Ⅰ)证明:是上的偶函数; (Ⅱ)若关于的不等式在上恒成立,求实数的取值范围; (Ⅲ)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号