在淮北市高三“一模”考试中,某校甲、乙、丙、丁四名同学,在学校年级名次依次为l,2,3,4名,如果在“二模”考试中的前4名依然是这四名同学.
(1)求“二模”考试中恰好有两名同学排名不变的概率;
(2)设“二模”考试中排名不变的同学人数为X,求X分布列和数学期望,
某小组6个人排队照相留念。(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?
设函数
(1)若证明:
。
(2)若不等式对于
及
恒成立,求实数
的取值范围。
已知正数满足
证明
若(n为正整数),
求证:不等式对一切正整数n恒成立
设,求证: