为了测量某住宅大楼每层的平均高度(层高)及电梯运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验,一质量为m=50kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层全过程中,体重计示数随时间变化的情况,并作出了如图所示的图像,已知t=0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层.求:电梯启动和制动时的加速度大小;
该大楼的层高.
水平面上两根足够长的不光滑金属导轨固定放置,间距为L,一端通过导线与阻值为R的电阻连接,导轨上放一质量为m的金属杆,金属杆与导轨的电阻不计,磁感应强度方B的匀强磁场方向竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动,当改变恒定拉力F大小时,相对应的匀速运动速度υ大小也会变化,F与υ的关系如图所示.F0、υ0为已知量.求:金属杆与导轨间的滑动摩擦力f==?
当恒定外力为2F0时,杆最终做匀速运动的速度大小?
如图所示,水平地面上方分布着水平向右的匀强电场。一“L”形的绝缘硬质管竖直固定在匀强电场中。管的水平部分长为l1=0.2m,离水平面地面的距离为h=5.0m,竖直部分长为l2=0.1m。一带正电的小球从管的上端口A由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球在电场中受到的电场力大小为重力的一半。求:小球运动到管口B时的速度大小;
小球着地点与管的下端口B的水平距离。(g=10m/s2)
汤姆生曾采用电场、磁场偏转法测定电子的比荷,具体方法如下:
Ⅰ.使电子以初速度v1垂直通过宽为L的匀强电场区域,测出偏向角θ,已知匀强电场的场强大小为E,方向如图(a)所示
Ⅱ.使电子以同样的速度v1垂直射入磁感应强度大小为B、方向如图(b)所示的匀强磁场,使它刚好经过路程长度为L的圆弧之后射出磁场,测出偏向角φ,请继续完成以下三个问题:电子通过匀强电场和匀强磁场的时间分别为多少?
若结果不用v1表达,那么电子在匀强磁场中做圆弧运动对应的圆半径R为多少?
若结果不用v1表达,那么电子的比荷e / m为多少?
如图所示,一位质量m=65kg参加“挑战极限运动”的业余选手,要越过一宽度为s=3m的水沟,跃上高为h=1.8m的平台,采用的方法是:人手握一根长L=3.25m的轻质弹性杆一端。从A点由静止开始匀加速助跑,至B点时,杆另一端抵在O点的阻挡物上,接着杆发生形变。同时人蹬地后被弹起,到达最高点时杆处于竖直,人的重心恰位于杆的顶端,此刻人放开杆水平飞出,最终趴落到平台上,运动过程中空气阻力可忽略不计。(g取10m/s2)设人到达B点时速度vB=8m/s,人匀加速运动的加速度a=2m/s2,求助跑距离SAB。
人要到达平台,在最高点飞出时刻速度
至少多大?
设人跑动过程中重心离地高度H=1.0m,在(1)、(2)问的条件下,在B点人蹬地弹起瞬间,人至少再做多少功?
如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左侧存在电场强度为E、方向竖直向下的匀强电场,MO右侧某个区域存在磁感应强度为B、垂直纸面向里的匀强磁场,O点处在磁场的边界上.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v()垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左.不计粒子的重力和粒子间的相互作用力,求:
速度最大的粒子自O点射入磁场至返回水平线POQ所用的时间.
磁场区域的最小面积.
根据你以上的计算可求出粒子射到PQ上的最远点离O的距离,请写出该距离的大小(只要写出最远距离的最终结果,不要求写出解题过程)