已知数列{an}的前n项和,数列
为等比数列,且首项b1和公比q满足:
(I)求数列的通项公式;
(II)设,记数列
的前n项和
,若不等式
对任意
恒成立,求实数
的最大值.
如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是()
A.AC⊥SB |
B.AB∥平面SCD |
C.SA与平面SBD所成的角等于SC与平面SBD所成的角 |
D.AB与SC所成的角等于DC与SA所成的角 |
张华同学上学途中必须经过四个交通岗,其中在
岗遇到红灯的概率均为
,在
岗遇到红灯的概率均为
.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若,就会迟到,求张华不迟到的概率;
(2)求EX.
甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
选手 |
甲 |
乙 |
丙 |
概率 |
![]() |
![]() |
![]() |
若三人各射击一次,恰有k名选手击中目标的概率记为.
(1)求X的分布列;
(2)若击中目标人数的均值是2,求P的值.
掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值。
从1到9的九个数字中取三个偶数四个奇数,试问:
①能组成多少个没有重复数字的七位数?
②上述七位数中三个偶数排在一起的有几个?
③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?
④在①中任意两偶然都不相邻的七位数有几个?