已知函数
(Ⅰ)求与
,
与
;
(Ⅱ)由(Ⅰ)中求得结果,你能发现当时,
与
有什么关系?并证明你的发现;
(Ⅲ)求.
已知.
(1)若,求
的值;
(2)若,且
,求
的值.
已知命题:“,使等式
成立”是真命题.
(1)求实数m的取值集合M;
(2)设不等式的解集为N,若
是
的必要条件,求a的取值范围.
设函数,
.
(Ⅰ)若,求
的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数和
,使得
和
?若存在,求出
和
的值.若不存在,说明理由.
(Ⅲ)设有两个零点
,且
成等差数列,试探究
值的符号.
设等比数列的首项为
,公比为
(
为正整数),且满足
是
与
的等差中项;数列
满足
(
).
(Ⅰ)求数列的通项公式;
(Ⅱ)试确定的值,使得数列
为等差数列;
(Ⅲ)当为等差数列时,对每个正整数
,在
与
之间插入
个2,得到一个新数列
. 设
是数列
的前
项和,试求满足
的所有正整数
.
某公园准备建一个摩天轮,摩天轮的外围是一个周长为米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为
元/根,且当两相邻的座位之间的圆弧长为
米时,相邻两座位之间的钢管和其中一个座位的总费用为
元.假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为
元.
(Ⅰ)试写出关于
的函数关系式,并写出定义域;
(Ⅱ)当米时,试确定座位的个数,使得总造价最低?