(本小题满分l 3分)在数列{an}中,a1=2,an+l=an+cn (n∈N*,常数c≠0),且a1,a2,a3成等比数列.
(I)求c的值;
(Ⅱ)求数列{an}的通项公式.
已知椭圆C:的离心率为
,左、右焦点分别为
,点G在椭圆C上,且
,
的面积为3.
(1)求椭圆C的方程:
(2)设椭圆的左、右顶点为A,B,过的直线
与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于
轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
已知数列满足:
,且
。
(1)求通项公式;
(2)求数列的前n项的和
在直三棱柱中,AA1="AB=BC=3,AC=2," D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为
,现已赛完两局,乙暂时以2∶0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边
所对的角,若
,求
的最大值.