.
给定椭圆>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“伴随圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线
与椭圆C只有一个公共点,且与椭圆
的“伴随圆”相交于M、N两点,求弦MN的长;
(3)点是椭圆
的“伴随圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个公共点,求证:
。
如图,PA切圆O于点A,割线PBC交圆O于点B、C,∠APC的角平分线分别与AB、AC相交于点D、E,求证:
(1)AD=AE;
(2)AD2=DB·EC.
如图,在△ABC中,∠B=90°,以AB为直径的圆O交AC于D,过点D作圆O的切线交BC于E,AE交圆O于点F.求证:
(1)E是BC的中点;
(2)AD·AC=AE·AF.
如图,圆O的直径AB=2,C是圆O外一点,AC交圆O于点E,BC交圆O于点D,已知AC=AB,BC=4,求△ADE的周长.
如图,在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若AC=AB,求证:BN=2AM.
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连结AD交圆O于点E,连结BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.