某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,第一次服药后每毫升血液中的含药
量
与服药后的时间
之间近似满足如图所示的曲线。其中
是直线段,曲线部分
是过
、
两点的函数
的图象。
(I)写出第一次服药后每毫升血液中含药量
关于时间
的函数关系式;
(II)据测定:每毫升血液中含药量不少于
时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?
(Ⅲ) 若按(II)中的最迟时间服用第二次药,则第二次服药后再过
,该病人每毫升血液中含药量为多少
?(精确到
)。
已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.
已知f(x)是实数集R上的函数,且对任意x
R,f(x)=f(x+1)+f(x-1)恒成立.
(1)求证:f(x)是周期函数.
(2)已知f(3)=2,求f(2 004).
已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)="-3."
(1)证明:函数y=f(x)是R上的减函数;
(2)证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
判断下列各函数的奇偶性:
(1)f(x)=(x-2)
;
(2)f(x)=
;
(3)f(x)=
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=
x,求使f(x)=-
在[0,2 009]上的所有x的个数.