(本小题满分12分)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为
,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望。
已知函数,
.
(1)若函数在
处取得极值,求
的值;
(2)若函数的图象上存在两点关于原点对称,求
的范围.
已知抛物线:
的焦点为
,若过点
且斜率为
的直线与抛物线相交于
两点,且
.
(1)求抛物线的方程;
(2)设直线为抛物线
的切线,且
∥
,
为
上一点,求
的最小值.
如图,直三棱柱中,
,
,
是
的中点,△
是等腰三角形,
为
的中点,
为
上一点.
(1)若∥平面
,求
;
(2)平面将三棱柱
分成两个部分,求较小部分与较大部分的体积之比.
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:
(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在
之间的概率;
(3)根据频率分布直方图估计这次测试的平均分.
设数列的前
项和
,数列
满足
.
(1)求数列的通项公式;
(2)求数列的前
项和
.