(本小题满分12分)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为
,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望。
已知椭圆Γ:(a>b>0)经过D(2,0),E(1,
)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且
.
①证明:
②求△AOB的面积.
如图,已知的直径AB=3,点C为
上异于A,B的一点,
平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求直线AM与平面VAC所成角的大小.
某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本.统计数据如下:
(1)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?
(2)在A,B,C,D,E,F六名学生中,仅有A,B两名学生认为作业多.如果从这六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量,
,且
(1)求角B的大小;
(2)求函数的值域.
已知等差数列的前n项和为
,且
(1)求数列的通项公式;
(2)设,求数列
的前n项和Tn.