(本题14分)
设为实数,函数
.
(1)若,求
的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式
的解集.
(本小题满分12分)已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)证明:当时,
.
中,
是
上的点,
平分
,
面积是
面积的2倍.
(Ⅰ) 求;
(Ⅱ)若,
,求
和
的长.
(本小题12分)已知向量,
,函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)在中,内角
的对边分别为
,且
,若对任意满足条件的
,不等式
恒成立,求实数
的取值范围.
(本小题满分11分)已知数列的前
项和
.
(1)求数列的通项公式;
(2)证明:对任意,都有
,使得
成等比数列.
(本小题满分12分)已知椭圆,其中
为左、右焦点,且离心率
,直线
与椭圆交于两不同点
.当直线
过椭圆C右焦点F2且倾斜角为
时,原点O到直线
的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若,当
面积为
时,求
的最大值.