已知,设命题
:函数
在区间
上与
轴有两个不同的交点;命题
:
在区间
上有最小值.若
是真命题,求实数
的取值范围.
等边三角形的边长为3,点
、
分别是边
、
上的点,且满足
(如图1).将△
沿
折起到△
的位置,使二面角
成直二面角,连结
、
(如图2).
(1)求证:平面
;
(2)在线段上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长,若不存在,请说明理由.
已知正方形的边长为2,
分别是边
的中点.
(1)在正方形内部随机取一点
,求满足
的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离为
,求随机变量
的分布列与数学期望
.
某单位有、
、
三个工作点,需要建立一个公共无线网络发射点
,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为
,
,
.假定
、
、
、
四点在同一平面内.
(1)求的大小;
(2)求点到直线
的距离.
已知函数,
,其中
为常数,
,函数
的图象与坐标轴交点处的切线为
,函数
的图象与直线
交点处的切线为
,且
。
(Ⅰ)若对任意的,不等式
成立,求实数
的取值范围.
(Ⅱ)对于函数和
公共定义域内的任意实数
。我们把
的值称为两函数在
处的偏差。求证:函数
和
在其公共定义域的所有偏差都大于2.