的三个内角
所对的边分别为
,向量
,
,且
.
(Ⅰ)求的大小;
(Ⅱ)现在给出下列三个条件:1、;2、
;3、
,试从中再选择两个条件以确定
,求出所确定的
的面积.
(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).
已知,
是平面上的两个定点,动点
满足
.
(1)求动点的轨迹方程;
(2)已知圆方程为,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于
,
两点,
为坐标原点,设
为
的中点,求
长度的取值范围.
已知数列,
是其前
项的且满足
(1)求证:数列为等比数列;
(2)记,求
的表达式。
设函数,其中向量
,
,
.
(1)求的最小正周期与单调递减区间;
(2)在△中,
、
、
分别是角
、
、
的对边,已知
,
,△
的面积为
,求
的值.
已知圆C:。
(1)求m的取值范围。
(2)当m=4时,若圆C与直线交于M,N两点,且
,求
的值。
(本小题满分14分)已知椭圆(
)的左、右顶点分别为
,
,
且,
为椭圆上异于
,
的点,
和
的斜率之积为
.
(1)求椭圆的标准方程;
(2)设为椭圆中心,
,
是椭圆上异于顶点的两个动点,求
面积的最大值.