已知,
是平面上的两个定点,动点
满足
.
(1)求动点的轨迹方程;
(2)已知圆方程为,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于
,
两点,
为坐标原点,设
为
的中点,求
长度的取值范围.
如图四棱锥中,底面
是平行四边形,
平面
,垂足为
,
在
上且
,
,
,
是
的中点,四面体
的体积为
.
(1)求二面角的正切值;
(2)求直线到平面
所成角的正弦值;
(3)在棱上是否存在一点
,使异面直线
与
所成的角为
,若存在,确定点
的位置,若不存在,说明理由.
成都七中为绿化环境,移栽了银杏树2棵,梧桐树3棵。它们移栽后的成活率分别为且每棵树是否存活互不影响,求移栽的5棵树中:
(1)银杏树都成活且梧桐树成活2棵的概率;
(2)成活的棵树的分布列与期望.
已知为坐标原点,
,
.
(Ⅰ)若的定义域为
,求
的单调递增区间;
(Ⅱ)若的定义域为
,值域为
,求
的值.
设,两个函数
,
的图像关于直线
对称.
(1)求实数满足的关系式;
(2)当取何值时,函数
有且只有一个零点;
(3)当时,在
上解不等式
.
如图所示,已知圆为圆上一动点,点
是线段
的垂直平分线与直线
的交点.
(1)求点的轨迹曲线
的方程;
(2)设点是曲线
上任意一点,写出曲线
在点
处的切线
的方程;(不要求证明)
(3)直线过切点
与直线
垂直,点
关于直线
的对称点为
,证明:直线
恒过一定点,并求定点的坐标.