如图四棱锥中,底面
是平行四边形,
平面
,垂足为
,
在
上且
,
,
,
是
的中点,四面体
的体积为
.
(1)求二面角的正切值;
(2)求直线到平面
所成角的正弦值;
(3)在棱上是否存在一点
,使异面直线
与
所成的角为
,若存在,确定点
的位置,若不存在,说明理由.
甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是
外,其余每局比赛甲队获胜的概率都是
。假设各局比赛结果相互独立。
(1)分别求甲队以胜利的概率;
(2)若比赛结果为求或
,则胜利方得
分,对方得
分;若比赛结果为
,则胜利方得
分、对方得
分。求乙队得分
的分布列及数学期望。
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.
小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从,
(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X。若X=0就参加学校合唱团,否则就参加学校排球队。
(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.
某车间共有名工人,随机抽取
名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本均值;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间名工人中有几名优秀工人;
(3)从该车间名工人中,任取
人,求恰有
名优秀工人的概率.
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。