(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分别是PA、BC的中点.
(I)求证:MN∥平面PCD;
(II)在棱PC上是否存在点E,使得AE上平面PBD?若存在,求出AE与平面PBC所成角的正弦值,若不存在,请说明理由
在△ABC中,角A,B,C对应的边分别是 a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sin Bsin C的值.
已知函数f(x)=cos
,x∈R
(1)求f的值;
(2)若cos θ=,θ∈
,求f
.
在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cos A的值;
(2)求c的值.
函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
.
(1)求函数f(x)的解析式;
(2)设α∈,f
=2,求α的值.
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.