(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图1中,“7分”所在扇形的圆心角等于 °.
(2)请你将图2的统计图补充完整.
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C
(1)若AD=4cm,求BC的长;
(2)设AD=x,BC=y,求y与x的函数关系式;
(3)梯形ABCD的面积为78cm2,求AD的长
一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1
个单位.用实数加法表示为 3+()=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移
个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移
个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为
.
(1)计算:{3,1}+{1,2};
(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点O吗? 在图1中画出四边形OABC.
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程.
李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:
营业员 |
小俐 |
小花 |
月销售件数(件) |
200 |
150 |
月总收入(元) |
1400 |
1250 |
假设月销售件数为件,月总收入为
元,销售每件奖励
元,营业员月基本工资为
元.
(1)求的值;
(2)若营业员小俐某月总收入不低于元,那么小俐当月至少要卖服装多少件?
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为
,图中的折线表示
与
之间的函数关系.根据图象进行以下探究:
信息读取:
(1)甲、乙两地之间的距离为km;
(2)请解释图中点的实际意义;
图象理解:
(3)求慢车和快车的速度;
(4)求线段所表示的
与
之间的函数关系式,并写出自变量
的取值范围;
问题解决:
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
某加油站五月份营销一种油品的销售利润(万元)与销售量
(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)