一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1
个单位.用实数加法表示为 3+()=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移
个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移
个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为
.
(1)计算:{3,1}+{1,2};
(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点O吗? 在图1中画出四边形OABC.
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程.
某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正、减产记为负):
(1)根据记录的数据可知星期四生产自行车多少辆?
(2)根据记录的数据可知本周实际生产自行车多少辆?
(3)产量最多的一天比产量最少的一天多生产自行车多少辆?
(4)该厂实行每周计件工资制,每生产一辆可得60元,若超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减 |
+5 |
-2 |
-4 |
+13 |
-10 |
+16 |
-9 |
已知是最小的正整数,b、c互为倒数,|b|+b=0,|c|=
,求式子
的值。
如图①所示的是一个长为2m,宽是2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形。
(1)你认为图‚中的阴影部分的正方形的边长等于_______。
(2)请用两种不同的方法列代数式表示图‚中的阴影部分的面积。
方法______________
方法‚______________
(3)观察图,你能写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系吗?
(4)当若m+n=6,mn=8,求(m-n)2的值.求阴影部分的面积。
计算:-32×-2[(-5)2×(-
)-240÷(-4)×
-2]
计算:(-3)3÷2×(-
)2+4-22×(-
)