(本小题满分12分)
如图,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
![]() |
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
已知二次函数(
为常数,且
)的图象过点A(0,1),B(1,-2)和点C(-1,6).
(1)求二次函数表达式;
(2)若,比较
与
的大小;
(3)将抛物线平移,平移后图象的顶点为
,若平移后的抛物线与直线
有且只有一个公共点,请用含
的代数式表示
.
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是 BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;
探索延伸:
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与边AC交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
(1)证明:DE是⊙O的切线;
(2)若⊙O的半径R=5,tanA=,求线段CD的长.
国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如下图,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A处测得高华峰顶F点的俯角为30°,保持方向不变又前进1200米到达点B处测得F点的俯角为45°.请据此计算高华峰的海拔高度.(结果保留整数,参考数值:≈1.732)
为了提高学生书写汉字的能力,某市举办了“汉字听写大赛”.为了决定谁将获得仅有的一张观赛券,小王和小李设计了如下的一个规则:不透明的甲袋中有编号分别为1,2,3的乒乓球三个,不透明的乙袋中有编号分别为4,5的乒乓球两个,五个球除了编号不同外,其他均相同.小王和小李分别从甲、乙两个袋子中随机地各摸出一个球,若所摸出的两个球上的数字之和为奇数,则小王去;若两个球上的数字之和为偶数,则小李去.试用列表法或画树状图的方法分析这个规则对双方是否公平?