(本小题满分12分)
如图,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
![]() |
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:
(1)这次被抽查的学生有 60 人;请补全条形统计图;
(2)在统计图2中,“乒乓球”对应扇形的圆心角是 144 度;
(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有 48 人.
解不等式≥
,并把它的解集在数轴上表示出来.
对某一个函数给出如下定义:若存在实数,对于任意的函数值
,都满足
,则称这个函数是有界函数,在所有满足条件的
中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数和
是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求
的取值范围;
(3)将函数的图象向下平移
个单位,得到的函数的边界值是
,当
在什么范围时,满足
?
在正方形外侧作直线
,点
关于直线
的对称点为
,连接
,其中
交直线
于点
.
(1)依题意补全图1;
(2)若,求
的度数;
(3)如图2,若,用等式表示线段
之间的数量关系,并证明.
在平面直角坐标系中,抛物线
经过点
(0,
),
(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为
,点
是抛物线对称轴上一动点,记抛物线在
,
之间的部分为图象
(包含
,
两点).若直线
与图象
有公共点,结合函数图像,求点
纵坐标
的取值范围.