如图,在直三棱柱中,平面
侧面
.
(Ⅰ)求证:;
(Ⅱ)若直线与平面
所成角是
,锐二面角
的平面角是
,试判断
与
的大小关系,并予以证明.
设Sn是正项数列的前n项和,
.
(I)求数列的通项公式;
(II)的值.
的三个内角
所对的边分别为
,向量
,
,且
.
(Ⅰ)求的大小;
(Ⅱ)现在给出下列三个条件:1、;2、
;3、
,试从中再选择两个条件以确定
,求出所确定的
的面积.
(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).
已知函数,
,
,
,
,
,将它们分别写在六张卡片上,放在一个盒子中,
(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的
函数是奇函数的概率;
(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率
已知函数.
(Ⅰ)当时,求
的最小值;
(Ⅱ)若函数在区间
上为单调函数,求实数
的取值范围;
(Ⅲ)当时,不等式
恒成立,求实数
的取值范围.