(本小题满分12分)某投资商到一开发区投资72万元建起了一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设
表示前n年的纯利润总和,(f(n)=前n年的总收入–前n年的总支出–投资额72万元).
(I)该厂从第几年开始盈利?
(II)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.
(本小题满分14分)
已知m>0,设命题函数
在
上单调递减;命题
关于x的不等式
的解集为R。若命题
与
有且仅有一个正确,求
的取值范围。
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(
)·
=0,求t的值
.(本小题满分14分)
已知函数
(Ⅰ)求函数的定义域,并证明
在定义域上是奇函数;
(Ⅱ)若恒成立,求实数
的取值范围;
(Ⅲ)当时,试比较
与
的大小关系
(本小题满分14分)
已知等差数列的公差为
, 且
,
(1)求数列的通项公式
与前
项和
;
(2)将数列的前
项抽去其中一项后,剩下三项按原来顺序恰为等比数列
的前3项,记的前
项和为
, 若存在
, 使对任意
总有
恒成立, 求实数
的取值范围.K
((本小题满分14分)
已知圆的圆心为
,半径为
,圆
与椭圆
:
有一个公共点
(3,1),
分别是椭圆的左、右焦点.
(1)求圆的标准方程;
(2)若点P的坐标为(4,4),试探究斜率为k的直线与圆
能否相切,若能,求出椭圆
和直线
的方程;若不能,请说明理由.