(本小题满分12分)已知a∈(0,6),b∈(0,6)
(I)求∣a-b∣≤1的概率;
(Ⅱ)以a,b作为直角三角形两直角边的边长,则斜边长小于6的概率.
如图,点
为锐角
的内切圆圆心,过点
作直线
的垂线,垂足为
,圆
与边
相切于点
.若
,求
的度数.
已知数列
满足
,
,
,
是数列
的前
项和.
(1)若数列
为等差数列.
(ⅰ)求数列的通项
;
(ⅱ)若数列
满足
,数列
满足
,试比较数列
前
项和
与
前
项和
的大小;
(2)若对任意
,
恒成立,求实数
的取值范围.
已知函数
(
为常数),其图象是曲线
.
(1)当
时,求函数
的单调减区间;
(2)设函数
的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点
为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
已知
的三个顶点
,
,
,其外接圆为
.
(1)若直线
过点
,且被
截得的弦长为2,求直线
的方程;
(2)对于线段
上的任意一点
,若在以
为圆心的圆上都存在不同的两点
,使得点
是线段
的中点,求
的半径
的取值范围.
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?