(本小题满分12分)热力公司为某生活小区铺设暖气管道,为减少热量损耗,管道外表需要覆盖保温层。经测算要覆盖可使用20年的保温层,每厘米厚的保温层材料成本为2万元,小区每年的气量损耗用
(单位:万元)与保温层厚度
(单位:
)满足关系:
若不加保温层,每年热量损耗费用为5万元。设保温费用与20年的热量损耗费用之和为
(1)求的值及
的表达式;
(2)问保温层多厚时,总费用最小,并求最小值。
如图所示,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EC·EB.
已知:如图所示,在△ABC中,AB=AC,O是△ABC的外心,延长CA到P,再延长AB
到Q,使AP=BQ.求证:O,A,P,Q四点共圆.
如图所示,圆O的两弦AB和CD交于点E,
EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.
(1)求证:△DFE∽△EFA;
(2)如果EF=1,求FG的长.
从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点.
求证:=
.
已知:如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:AE·BF·AB=CD3.