(本小题满分12分)热力公司为某生活小区铺设暖气管道,为减少热量损耗,管道外表需要覆盖保温层。经测算要覆盖可使用20年的保温层,每厘米厚的保温层材料成本为2万元,小区每年的气量损耗用(单位:万元)与保温层厚度(单位:)满足关系:若不加保温层,每年热量损耗费用为5万元。设保温费用与20年的热量损耗费用之和为(1)求的值及的表达式;(2)问保温层多厚时,总费用最小,并求最小值。
已知函数满足,且当时,,当时,的最大值为-4. (1)求实数的值; (2)设,函数.若对任意,总存在,使,求实数的取值范围.
已知函数(为自然对数的底数). (1)当时,求过点处的切线与坐标轴围成的三角形的面积; (2)若在(0,1)上恒成立,求实数的取值范围.
在中,内角所对的边分别为,已知. (1)求角的取值范围; (2)若,的面积,为钝角,求角的大小.
已知,命题,命题. (1)若命题为真命题,求实数的取值范围; (2)若命题“”为真命题,命题“”为假命题,求实数的取值范围.
已知函数. (1)设,将函数表示为关于的函数,求的解析式; (2)对任意,不等式恒成立,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号