(本小题满分12分)
如图,四边形为矩形,
平面
,
,
平面
于点
,且点
在
上.
(Ⅰ)求证:;
(Ⅱ)求四棱锥的体积;
(Ⅲ)设点在线段
上,且
,
试在线段上确定一点
,使得
平面
.
【2015高考山东,文18】如图,三棱台中,
分别为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若求证:平面
平面
.
【2015高考湖南,文18】(本小题满分12分)如图,直三棱柱的底面是边长为2的正三角形,
分别是
的中点。
(Ⅰ)证明:平面平面
;
(Ⅱ)若直线与平面
所成的角为
,求三棱锥
的体积。
【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马中,侧棱
底面
,且
,点
是
的中点,连接
.
(Ⅰ)证明:平面
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马的体积为
,四面体
的体积为
,求
的值.
【2015高考广东,文18】(本小题满分14分)如图,三角形所在的平面与长方形
所在的平面垂直,
,
,
.
(1)证明:平面
;
(2)证明:;
(3)求点到平面
的距离.
【2015高考福建,文20】如图,是圆
的直径,点
是圆
上异于
的点,
垂直于圆
所在的平面,且
.
(Ⅰ)若为线段
的中点,求证
平面
;
(Ⅱ)求三棱锥体积的最大值;
(Ⅲ)若,点
在线段
上,求
的最小值.