(.(本小题满分12分)
如图,焦距为2的椭圆E的两个顶点分别为和
,且
与
共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.
(本小题共13分)
已知,
.
(Ⅰ)求的值;
(Ⅱ)求函数的值域.
将圆心角为1200,面积为3的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
已知椭圆经过点
其离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆
相交于A、B两点,以线段
为邻边作平行四边形OAPB,其中顶点P在椭圆
上,
为坐标原点.求
的取值范围.
一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
已知数列是首项为
且公比q不等于1的等比数列,
是其前n项的和,
成等差数列.证明:
成等比数列.