某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
组号 |
分组 |
频数 |
频率 |
第1组 |
![]() |
5 |
0.050 |
第2组 |
![]() |
① |
0.350 |
第3组 |
![]() |
30 |
② |
第4组 |
![]() |
20 |
0.200 |
第5组 |
![]() |
10 |
0.100 |
合计 |
100 |
1.00 |
如图,在梯形中,
,
,四边形
为矩形,平面
平面
,
.
(1)求证:平面
;
(2)点在线段
上运动,设平面
与平面
所成二面角的平面角为
,试求
的取值范围.
(本小题满分12分)
在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做这两题的可能性均为.
(1)求其中甲、乙二名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求
的概率分布及数学期望.
(本小题满分12分)
已知数列是公差为2的等差数列,且
,
,
成等比数列.
(1)求的通项公式;
(2)令,记数列
的前
项和为
,求证:
.
(本小题满分12分)在△ABC中,分别为内角A, B, C的对边,且
(1)求角A的大小;
(2)求的最大值.
(本小题满分14分)
给定椭圆:
. 称圆心在原点
,半径为
的圆是椭圆
的“准圆”. 若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过动点
作直线
,使得
与椭圆
都只有一个交点,试判断
是否垂直?并说明理由.