:某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从以下4个方案中选择合理的方案来确定每个演讲者的最后得分。
方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.
方案3:所有评委所给分的中位数.
方案4:所有评委所给分的众数.
|
为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:
化简,并选一个你喜欢的数代入求值.(8分)
.
解下列方程(本题共3个小题,每小题4分,共12分)
(1)x2-2x-7=0(配方法);
(2)5x(2x-3)-(3-2x)=0(分解因式法);
(3)2x2-9x+8=0(公式法).
某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。
(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;
(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。
(3)请分析并回答售价在什么范围内商家就可获得利润。
二次函数的图象如图所示,根据图象解答下列问题:
(1)写出方程的两个根;
(2)写出随
的增大而减小的自变量
的取值范围;
如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?