从4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加某项服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.
已知函数,, (1)判断函数的单调性,并证明; (2)求函数的最大值和最小值.
求半径为4,与圆x2+y2―4x―2y―4=0相切,且和直线y=0相切的圆的方程.
已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (Ⅰ)证明:DN//平面PMB; (Ⅱ)证明:平面PMB平面PAD;
已知直线经过点,且斜率为. (Ⅰ)求直线的方程; (Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.
已知空间四边形ABCD的各边及对角线都相等,AC和平面BCD所成角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号