已知抛物线:,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为.(1)当时,求椭圆的标准方程;(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.
求过直线与的交点,且平行于直 线的直线方程。
(本小题满分14分)设奇函数对任意都有求和的值;数列满足:=+,数列是等差数列吗?请给予证明;设与为两个给定的不同的正整数,是满足(2)中条件的数列, 证明:.
(本小题满分14分)若函数, (1)当时,求函数的单调增区间; (2)函数是否存在极值.
(本小题满分14分) 已知是数列的前项和,且,时有 . (1)求证是等比数列; (2)求数列的通项公式.
(本小题满分14分)已知向量,且与向量的夹角为,其中是的内角. (1)求角的大小;(2)求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号