(本小题共14分)设函数在
处取得极值.
(Ⅰ)求与
满足的关系式;
(Ⅱ)若,求函数
的单调区间;
(Ⅲ)若,函数
,若存在
,
,使得
成立,求
的取值范围.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
已知函数.(
).
(1)当时,求函数
的极值;
(2)若对,有成立,求实数
的取值范围.
在等差数列中,
,其前
项和为
,等比数列
的各项均为正数,
,公比为
,且
,
.(Ⅰ)求
与
;(Ⅱ)设数列
满足
,求
的前
项和
如图,在四棱锥中,底面
是正方形,
平面
,
是
中点,
为线段
上一点.
(Ⅰ)求证:;
(Ⅱ)试确定点在线段
上的位置,使
//平面
,并说明理由.
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示
和用
表示
的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?