已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
(本题满分14分)
已知mÎR,设P:不等式;Q:函数
在(-¥,+¥)上有极值.求使P正确且Q正确的m的取值范围.
(本小题满分14分)
已知集合,集合
,若
,求实数
的取值范围。
已知圆过点
且与圆
:
关于直线
对称,作斜率为
的直线
与圆
交于
两点,且点
在直线
的左上方。
(1)求圆C的方程。
(2)证明:△的内切圆的圆心在定直线
上。
(3)若∠,求△
的面积。
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2
=2.
(1)求证:;
(2)求证:∥平面
;
(3)求三棱锥的体积
.
设椭圆的左,右两个焦点分别为
,短轴的上端点为
,短轴上的两个三等分点为
,且
为正方形。
(1)求椭圆的离心率;
(2)若过点作此正方形的外接圆的切线在
轴上的一个截距为
,求此椭圆方程。