某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示
和用
表示
的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
等边三角形的边长为3,点
、
分别是边
、
上的点,且满足
(如图1).将△
沿
折起到△
的位置,使二面角
成直二面角,连结
、
(如图2).
(1)求证:平面
;
(2)在线段上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长,若不存在,请说明理由.
已知正方形的边长为2,
分别是边
的中点.
(1)在正方形内部随机取一点
,求满足
的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离为
,求随机变量
的分布列与数学期望
.
某单位有、
、
三个工作点,需要建立一个公共无线网络发射点
,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为
,
,
.假定
、
、
、
四点在同一平面内.
(1)求的大小;
(2)求点到直线
的距离.
已知函数,
,其中
为常数,
,函数
的图象与坐标轴交点处的切线为
,函数
的图象与直线
交点处的切线为
,且
。
(Ⅰ)若对任意的,不等式
成立,求实数
的取值范围.
(Ⅱ)对于函数和
公共定义域内的任意实数
。我们把
的值称为两函数在
处的偏差。求证:函数
和
在其公共定义域的所有偏差都大于2.
已知椭圆的离心率为
,
,
为椭圆
的两个焦点,点
在椭圆
上,且
的周长为
。
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆
相交于
、
两点,若
(
为坐标原点),求证:直线
与圆
相切.