已知椭圆的离心率为
,
,
为椭圆
的两个焦点,点
在椭圆
上,且
的周长为
。
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆
相交于
、
两点,若
(
为坐标原点),求证:直线
与圆
相切.
(本小题满分13分)
某农民在一块耕地上种植一种作物,每年种植成本为元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(Ⅰ)设表示该农民在这块地上种植1年此作物的利润,求
的分布列;
(Ⅱ)若在这块地上连续3年种植此作物,求这3年中第二年的利润少于第一年的概率.
(本小题满分13分)在中,角
所对的边分别为
,已知
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.
(本小题满分14分)已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若存在两条直线,
都是曲线
的切线,求实数
的取值范围;
(Ⅲ)若,求实数
的取值范围.
(本小题满分13分)已知椭圆过点
,且离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若椭圆上存在点
关于直线
对称,求
的所有取值构成的集合
,并证明对于
,
的中点恒在一条定直线上.
(本小题满分14分)如图1,在梯形中,
,
,
,四边形
是矩形.将矩形
沿
折起到四边形
的位置,使平面
平面
,
为
的中点,如图2.
(Ⅰ)求证:;
(Ⅱ)求证://平面
;
(Ⅲ)判断直线与
的位置关系,并说明理由.