(本小题满分12分)已知,
,
(Ⅰ)把表示为
的函数
并写出定义域;
(Ⅱ)求的最值.
(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,
,
二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)求直线EB与平面PAC所成的角。
(本小题满分12分)已知数列的首项为
,前
项和为
,且对任意的
,
当时,
总是
与
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,
是数列
的前
项和,
,求
.
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问
题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、
四轮问题的概率分别为、
、
、
,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(本小题满分10分)已知向量,
。
(Ⅰ)若,求
的值;
(Ⅱ)设,求
的取值范围.