已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
已知点A(1,0)、B(0,2)、C(-1,-2),求以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
设两个非零向量e1和e2不共线.
(1)如果=e1-e2,
=3e1+2e2,
=-8e1-2e2,
求证:A、C、D三点共线;
(2)如果=e1+e2,
=2e1-3e2,
=2e1-ke2,且A、C、D三点共线,求k的值.
已知:任意四边形ABCD中,E、F分别是AD、BC的中点,求证:=
(
+
).
如图所示,在△ABC中,D、F分别是BC、AC的中点,=
,
=a,
=b.
(1)用a、b表示向量、
、
、
、
;
(2)求证:B、E、F三点共线.
如图所示,△ABC中,=
,DE∥BC交AC于E,AM是BC边上中线,交DE于N.设
=a,
=b,用a,b分别表示向量
,
,
,
,
,
.