已知椭圆的离心率为
,过右顶点A的直线l与椭圆C相交于A、B两点,且
.
(1)求椭圆C和直线l的方程;
(2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.
已知数列、
中,
,且当
时,
,
.记
的阶乘
.
(1)求数列的通项公式;
(2)求证:数列为等差数列;
(3)若,求
的前
项和.
一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:
,
,
,
,
,
.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知中,三条边
所对的角分别为
、
、
,且
.
(1)求角的大小;
(2)若,求
的最大值.
已知函数.
(1)若曲线在
和
处的切线相互平行,求
的值;
(2)试讨论的单调性;
(3)设,对任意的
,均存在
,使得
.试求实数
的取值范围.
已知点直线
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.
(1)求动点的轨迹方程;
(2)、
是轨迹
上异于坐标原点
的不同两点,轨迹
在点
、
处的切线分别为
、
,且
,
、
相交于点
,求点
的纵坐标.