(本小题满分14分)在△中,内角
的对边分别为
,已知
(Ⅰ)求的值;
(Ⅱ)的值.
【2015高考北京,文19】(本小题满分13分)设函数,
.
(Ⅰ)求的单调区间和极值;
(Ⅱ)证明:若存在零点,则
在区间
上仅有一个零点.
【2015高考安徽,文21】已知函数
(Ⅰ)求的定义域,并讨论
的单调性;
(Ⅱ)若,求
在
内的极值.
【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.
如图,三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为5千米/小时,乙的路线是
,速度为8千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求与
的值;
(2)已知警员的对讲机的有效通话距离是3千米.当时,求
的表达式,并判断
在
上得最大值是否超过3?说明理由.
【2015高考上海,文20】本题共2小题,第1小题6分,第2小题8分.
已知函数,其中
为实数.
(1)根据的不同取值,判断函数
的奇偶性,并说明理由;
(2)若,判断函数
在
上的单调性,并说明理由.
【2015高考上海,理20】如图,,
,
三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为
千米/小时,乙的路线是
,速度为
千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求与
的值;
(2)已知警员的对讲机的有效通话距离是千米.当
时,求
的表达式,并判断
在
上得最大值是否超过
?说明理由.