【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.
如图,三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为5千米/小时,乙的路线是
,速度为8千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求与
的值;
(2)已知警员的对讲机的有效通话距离是3千米.当时,求
的表达式,并判断
在
上得最大值是否超过3?说明理由.
已知椭圆 的离心率为 ,点 在 上.
(1)求 的方程;
(2)过点 的直线交 于点 , 两点,直线 , 与 轴的交点分别为 , ,证明:线段 的中点为定点.
如图,在三棱锥 中, , , , , , , , 的中点分别为 , , ,点 在 上, .
(1)证明: 平面 ;
(2)证明:平面 平面 ;
(3)求二面角 的正弦值.
在 中,已知 , , .
(1)求 ;
(2)若 为 上一点.且 ,求 的面积.
某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行 次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为 , .试验结果如下:
试验序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
伸缩率 |
545 |
533 |
551 |
522 |
575 |
544 |
541 |
568 |
596 |
548 |
伸缩率 |
536 |
527 |
543 |
530 |
560 |
533 |
522 |
550 |
576 |
536 |
记 ,记 的样本平均数为 ,样本方差为 .
(1)求 , ;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果 ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
[选修4-5:不等式选讲]
已知 .
(1)求不等式 的解集;
(2)在直角坐标系 中,求不等式组 所确定的平面区域的面积.