(本小题满分14分)
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是
,至少选修一门的概率是
,用
表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数 为
上的偶函数”为事件
,求事件
的概率;
(Ⅲ)求的分布列和数学期望。
已知圆C经过P(4,– 2),Q(– 1,3)两点,且在y轴上截得的线段长为,半径小于5.
(1)求直线PQ与圆C的方程.
(2)若直线l∥PQ,且l与圆C交于点A、B,,求直线l的方程.
(
已知过点A(0,2),且方向向量为,相交于M、N两点.
(1)求实数的取值范围:
(2)若O为坐标原点,且.
数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3,…).
证明:(1).数列{}是等比数列;(2).Sn+1=4an.
求值(每小题5分)
(1)
(2)已知,求
的值。
已知定点,动点
满足
,
(1)求动点的轨迹方程,并说明方程表示什么曲线;
(2)当时,求
的最大值和最小值。