(本小题满分12分)设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)设直线
(直线
、
不重合),若
、
均与椭圆
相切,试探究在
轴上是否存在定点
,使点
到
、
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.
某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是
,且面试是否合格互不影响,求:
(1)至少有1人面试合格的概率;(2)签约人数X的分布列.
(本题满分10 分)已知函数f(x)=x3-ax2+3x.
(1) 若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值和最小值.
(2) 若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
设复数
满足
,且
是纯虚数,求
.
已知函数
.
(I)当
时,求函数
的单调区间;
(II)若函数
的图象在点
处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?