游客
题文

(本小题满分12分)
如图,在平面直角坐标系中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知,△ABC的面积,抛物线
经过A、B、C三点。

(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

解方程:
(1)
(2)

(1)化简:2a-[a-2(a-b)]-b
(2)先化简,再求值:已知多项式A=32—6ab+b2,B=—22+3ab—5b2,当=1,b=—1时,求A+2B的值.

【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE ≌△AFG,从而得出结论:___________________.
【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.

【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

已知:如图1,射线MN⊥AB,AM=1cm,MB=4cm.点C从M出发以2cm/s的 速度沿射线MN运动,设点 C的运动时间为t(s)

(1)当△ABC为等腰三角形时,求t的值;
(2)当△ABC为直角三角形时,求t的值;
(3)当t满足条件:__________时,△ABC为钝角三角形; 当_________时,△ABC为锐角三角形.

爱动脑筋的小明在学习了全等三角形和等腰三角形有关知识后作了如下探索:
(1)已知,如图,△ABC中,∠BAC是锐角,AB=AC,高AD、BG 所在的直线相交于点H, 且AG=BG,则AH和BC的关系是:_____________________;

(2)若把(1)中的“∠BAC是锐角”改为“∠BAC是钝角”(如图2),其他条件都不变, AH和BC的关系是否仍然成立, 若成立,请在图2中用三角板和量角器画出完整的图形并证明;若不成立,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号