【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE ≌△AFG,从而得出结论:___________________.
【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
右图是平面直角坐系: (6分)
(1)请写出三个顶点的坐标.
(2)请画出向右平稳3个单位,再向下平移2个位所得到
.
为了了解某校700名七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩统计整理后绘制如图的频数分布直方图(分数取整数),观察图形回答下列问题:
(1)79~89的频数是______________. (2分)
(2)本次随机抽查的学生人数是多少人. (2分)
(3)被抽取的人数中有多少人不格. (2分)
(4)你能否估计一下700名七年级学生成绩不有格的有多少人? (2分)
解下列不等式及不等式组,并把解集在数轴上表示出来.(每题4分,共8分)
(1) 3(2x+5)>2(4x+3)
(2)
解方程组(每小题4分,共8分)
(1)
(2)
如图,在正方形ABCD中,E是AB边上任意一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G。
(1)证明:BE="AG" ;
(2)点E位于什么位置时,∠AEF=∠CEB,说明理由。