(本题8分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 ▲ ;
(2)选择长跑训练的人数占全班人数的百分比是 ▲ ,该班共有同学 ▲ 人;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25% ,请求出参加训练之前的人均进球数.
计算: .
如图1,抛物线 与 轴的交点 和 ,与 轴交于点 ,顶点为 .
(1)求该抛物线的解析式;
(2)连接 , , ,将 沿 轴以每秒1个单位长度的速度向左平移,得到△ ,点 、 、 的对应点分别为点 、 、 ,设平移时间为 秒,当点 与点 重合时停止移动.记△ 与四边形 重合部分的面积为 ,请直接写出 与 之间的函数关系式;
(3)如图2,过该抛物线上任意一点 向直线 作垂线,垂足为 ,试问在该抛物线的对称轴上是否存在一点 ,使得 ?若存在,请求出 的坐标;若不存在,请说明理由.
背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点 、 、 在同一条直线上),发现 且 .
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形 绕点 按逆时针方向旋转(如图 ,还能得到 吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形 和菱形 ,将菱形 绕点 按顺时针方向旋转(如图 ,试问当 与 的大小满足怎样的关系时,背景中的结论 仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形 和矩形 ,且 , , ,将矩形 绕点 按顺时针方向旋转(如图 ,连接 , .小组发现:在旋转过程中, 的值是定值,请求出这个定值.
端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.
(1)肉粽和蜜枣粽的进货单价分别是多少元?
(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
如图, 为 的直径,点 在 上, 与过点 的切线互相垂直,垂足为 .连接 并延长,交 的延长线于点 .
(1)求证: ;
(2)若 , ,求 的长.