(本题12分)已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线
与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线
,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字
为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数
的图象上的概率;
(3)求小明、小华各取一次小球所确定的点(x,y)落在直线
下方的概率.
如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2) 下列结论正确的序号是.(少选酌情给分,多选、错均不给分)
①AO=2CO ;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:
台州市江南汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为
万元.(销售利润
销售价
进货价)
(1)求
与
的函数关系式;在保证商家不亏本的前提下,写出
的取值范围;
(2)假设这种汽车平均每周的销售利润为
万元,试写出
与
之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
已知关于x的一元二次方程有两个实数根为x1,x2.(x1≤x2)
(1)求k的取值范围;
(2)试用含k的代数式表示x1与x2.
(3)当
时.求k的值。
解下列方程:①
.
②