(本题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(1)求参加数学抽测的人数、抽测成绩的中位数及分数分别在
,
内的人数;
(2)若从分数在内的学生中任选两人进行调研谈话,求恰好有一人分数在
内的概率.
在如图所示的几何体中,四边形是矩形,
平面
,
,
∥
,
,
,
分别是
,
的中点.
(1)求证:∥平面
;
(2)求证:平面
.
已知向量,
,函数
,
三个内角
的对边分别为
.
(1)求的单调递增区间;
(2)若,求
的面积
.
已知函数.
(1)设是函数
的极值点,求
的值并讨论
的单调性;
(2)当时,证明:
>
.
已知椭圆:
(
)的焦距为
,且过点(
,
),右焦点为
.设
,
是
上的两个动点,线段
的中点
的横坐标为
,线段
的中垂线交椭圆
于
,
两点.
(1)求椭圆的方程;
(2)求的取值范围.